

JK Cement Mangrol

23rd National Award for Excellence in Energy Management 2022

Presented By:-Prabhat Parihar (Technical Head)

Santhanamariappan S (Production Head) Leela Vinoth Nagendran (Production Head) Yadvender Singh (Sr. Engineer-Process)

Brief introduction on Company

JKC

 JK Cement Ltd is an affiliate of Industrial conglomerate JK Organization, founded by Lala Kamlapat Singhania. The company is the second largest manufacturer of white cement in India (third largest in the world) & second largest producer of Wall putty in the country. First cement company to install a waste heat recovery power plant.

- JK Cement Mangrol with Total Clinker Capacity (5.65 mioTPA) and Total Cement Grinding Capacity (7.05 mioTPA).
- Product: OPC-43, OPC-53, PPC
- JK Cement Mangrol is certified with ISO 14001, ISO 9001, ISO 45001 & ISO 50001:2018 .
- Great Place to work certified company

Technology/Specification of sections

JK Cem	ent Mangrol	Line-1	Line-2	
Ctackar	Machine type	Twin boom stacker	Luffing stacker	Luffing stack
Stacker	IMake	Promac	FLSmidth	FLS
-	Capacity	350 TPH	850 t/h (wet)	1550 TPH
Deeleime	Machine type	Bridge type reclaimer	Bridge Reclaimer	Bridgre scra
Reclaime	Make	Promac	FLSmidth	FLS
	Capacity	200 TPH	550 t/h(wet)	800 TPH
Cruchar	Machine type	Impactor APPM 1650	Hammer Crusher with Wobbler Feeder	Impact crus
Crusher	Make	L&T	Thyseen Krupp polysious	FLS
	Capacity	350 TPH	800 TPH	1300 TPH
Raw Mil	ll Make	Promac (VRM) 02 Nos.	Thyseen Krupp Roller Press	FLS HRP-R-2
	Capacity	70 TPH	400 TPH	300 TPH
	Make	Promac	FLSmidth	FLSmidth
æ	Machina tuna	5 Stage, ILC, Single String	5 Stage, ILC, Single String	5 Stage, ILC,
es l	Machine type	Ø3.3M*50M long, 4.17 RPM Max	Ø4.35M*67M Long	Ø4.75M*74
🖌 🖌 Kiln	Capacity	1800 TPD (Design), 2250 (Actual)	5000 TPD (Design) & 5750 TPD (Actual)	6500 TPD (C
ŧ.	Type of cooler	Grate Cooler	Crossbar 14*47	Crossbar 18
¥ up	Grate area	43.848 Meter ² /6 fan	129.78 M ² /9 fans	190.6 mt sq
-	Burner type	Pyrojet Burner	Pyrojet Burner	Jetflex burn
Coal Mill	Make	Promac	FLSmidth Atox 22.5 VRM	FLS Atox 32.
	- Capacity	20 TPH on coal and 10 TPH on PC	38 TPH (Indian Coal), 22 TPH (Pet coke)	35 TPH 1009
Cement N	Aill Machine type	Ball Mill	Roller Press with Ball Mill (Combi circuit)	Roller Press
	Make	FLS 1962	FLSmidth TriboMax & Thyssenkrupp	Thyseen Kru
	Capacity	30 TPH	280 TPH (PPC),260 TPH(OPC)	260 TPH (PP
Packing Plar	Machine type	Mechanical Packer	FLS ventomatic single discharge packer (4 Nos)	Electronic Pa
Facking Pide	Capacity	60 TPH	120 TPH Each	150 TPH

JKC

Line-3

cker

raper

Isher

-2.47 Sq.m (02 Nos.)

C, Double String

4M Long, 5.5 RPM

(Design), 7700 TPD (Actual)

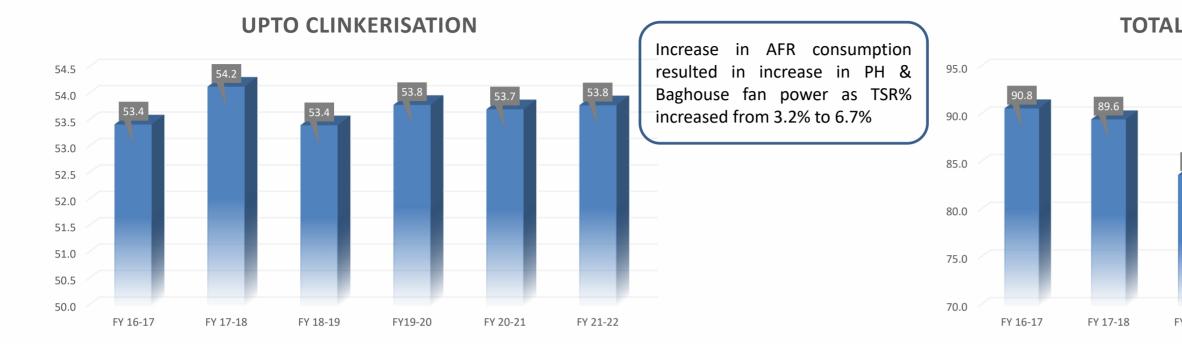
.8*63

q./13 fans

ner

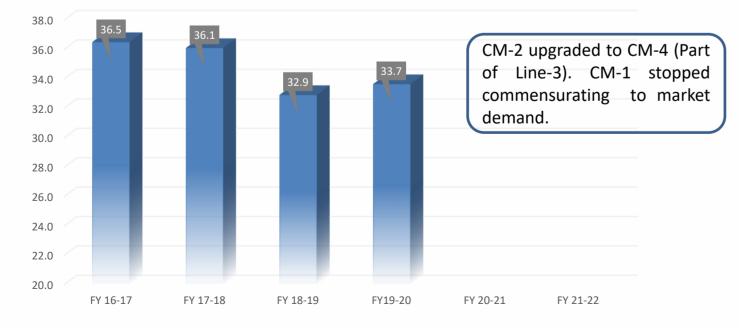
2.3 RPM

0% PC, 70 TPH 100% Indian

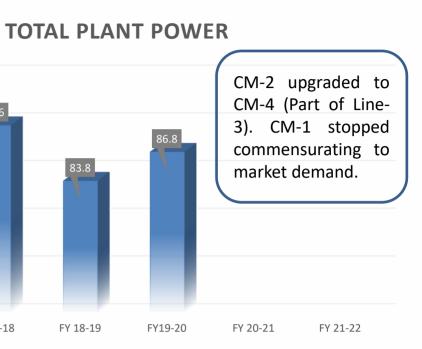

ss with Ball Mill (Combi circuit)

rupp Polysious

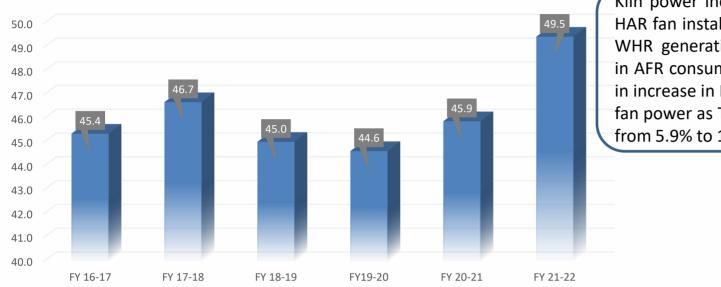
PPC), 240 TPH (OPC)


Packer (Ventomatic)

Specific Energy Consumption Line-1

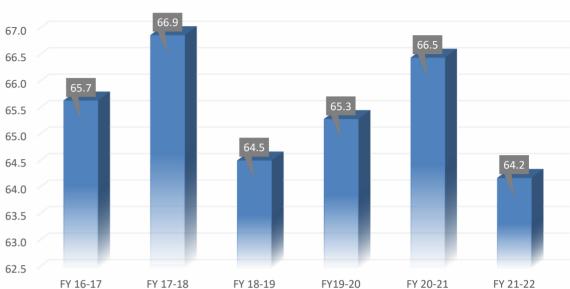

CEMENT GRINDING

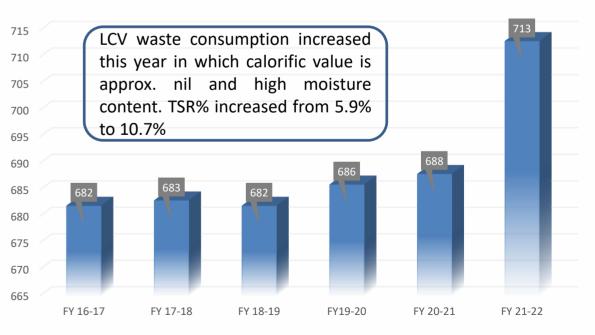
JKC

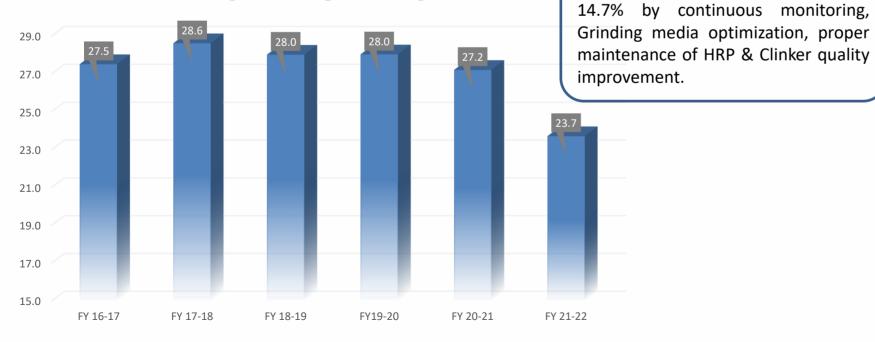


THERMAL ENERGY

Specific Energy Consumption Line-2

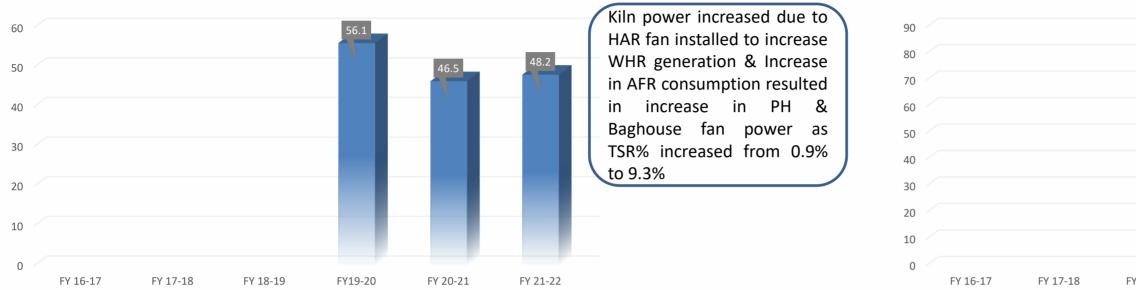

UPTO CLINKERISATION


JKC

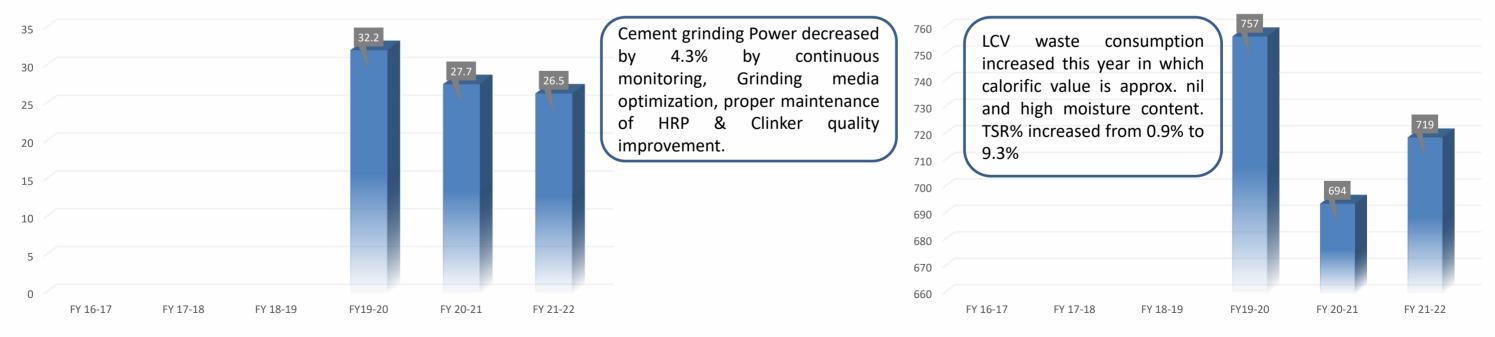

Kiln power increased due to HAR fan installed to increase WHR generation & Increase in AFR consumption resulted in increase in PH & Baghouse fan power as TSR% increased from 5.9% to 10.7%

Cement grinding Power decreased by

CEMENT GRINDING

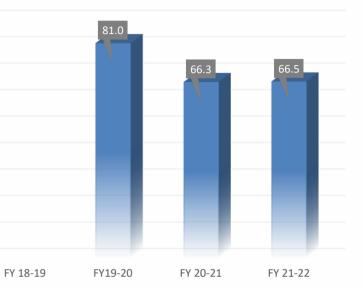

TOTAL PLANT POWER

THERMAL ENERGY


Specific Energy Consumption Line-3

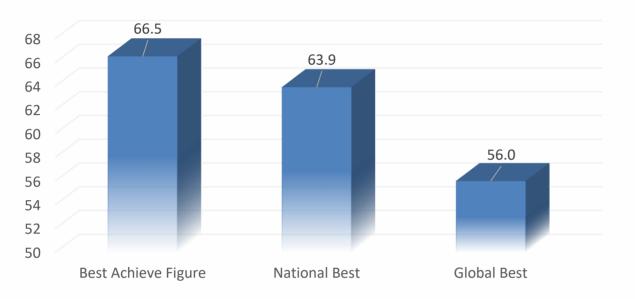
UPTO CLINKERISATION

JKC

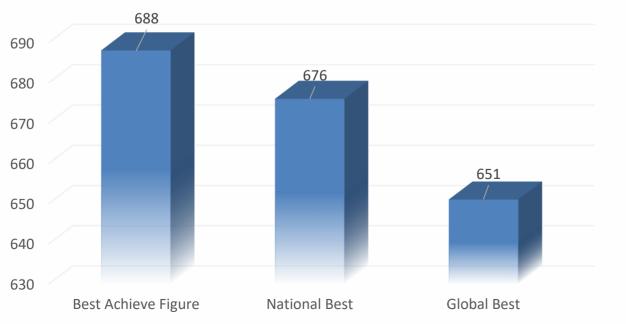


CEMENT GRINDING

TOTAL PLANT POWER



THERMAL ENERGY


Energy Benchmarking

TOTAL PLANT POWER

JKC

THERMAL ENERGY

Higher Electrical Energy:

- Raw mill-3 power is on higher side due to low output.
- Kiln power increased due to HAR fan installed to increase WHR generation.
- Petcoke grinding & consumption.
- OPC-53 grinding in Cement Mill-3 for which higher blaine is required resulted in higher power consumption.

Higher Thermal Energy:

- High Alternative fuel usage resulted in high oxygen is being maintained.
- High moisture AF usage.
- 100% Petcoke Usage.
- LCV waste consumption increased this year in which calorific value is approx. nil and high moisture content.

Year	No of Energy saving projects	Investments (INR million)	Electrical savings (Million kWh)	Thermal savings (Million Kcal/ MTOE)	Savings (INR Million)
FY 2019-20	9	34.17	1.02	89921.5	106.64
FY 2020-21	11	10467.58*	80.69	221265.5	777.18
FY 2021-22	14	335.40	74.67	63787.71	1167.69

*Remarks:- Investment is higher in FY 2020-21 because of New upto Clinkering Unit established and Cement Mill-2 modified into Cement Mill-4 by Ball mill to Combi Circuit.

Impact on SEC (Electrical kWh /MT cement, thermal)

0.4 kwh/Ts Cem, 31.4 Kcal/Kg Clk

26.2 kwh/Ts Cem, 54.0 Kcal/Kg Clk

21.4 kwh/Ts Cem, 80.9 Kcal/Kg Clk

Energy Saving projects implemented FY 2019-20

Sl.No.	Description of energy efficiency improvements measure	Category	Investment (Rupees)	Verified savings (Rupees)	Verified energy savings	Units	TOE saving
1	Continuous monoitoring of process parameters, Optimum operation of Kiln in Line-2	Energy saving	-	3659720	716188	Kwh	234.6
2	2 Usage of AFR in Line-1 by substituting primary fuel E		12326457	16434126	14570036045	Kcal	1457.0
3	3Usage of AFR in Line-2 by substituting primary fuelE4Replacement of 200Nos. 150Watt HPSV Well Glass light by 40 Watt LED Well GlassE5Replacement of 150Nos.70Watt HPSV Well Glass light by 40 Watt LED Well GlassE		13460600	84991889	75351427325	Kcal	7535.1
4			400000	404712	79200	Kwh	25.9
5			300000	82782	16200	Kwh	5.3
6	Replacement of 200 Nos. 2X36Watt Tube Light rod by LED Tube rod 2X18Watt.	Energy saving	70000	132451	25920	Kwh	8.5
7	1000 KW DC MOTOR OF SG FAN REPLACED WITH AC DRIVE	Energy saving	7500000	883008	172800	Kwh	56.6
8	Using of LED's instead of HPSV lamps. (WHR)	Energy saving	48000	20144	3942	Kwh	1.3
9	Using of LED's instead of HPSV lamps. (CPP)	Energy saving	64000	26858	5256	Kwh	1.7
			34169058	106635691			9326

Energy Saving projects implemented FY 2020-21

Sl.No.	Description of energy efficiency improvements measure	Category	Investment (Rupees)	Verified savings (Rupees)	Verified energy savings in MTOE	Units (kWh)	Fuel (MT)
1	Usage of AFR in Line-1 by substituting primary fuel	Fuel Change	8762971	15092318	-	-	1753.6
2	Usage of AFR in Line-2 by substituting primary fuel	Fuel Change	26294341	134107740	-	-	8709.1
3	Usage of AFR in Line-3 by substituting primary fuel	Fuel Change	7622608	70195102	-	-	1727.7
4	Replacement of Old lights: Replacement of 100Nos. 150Watt HPSV Well Glass light by 40 Watt LED Well Glass	Illumination	210000	261629	20.6	63510	-
5	Replacement of Old lights: Replacement of 110Nos.70Watt HPSV Well Glass light by 40 Watt LED Well Glass	Illumination	231000	99239	7.8	24090	-
6	Preheater area lighting circuit modification, reduction in number of lights	Illumination	0	144347	11.4	35040	-
8	Reduction in Thermal Energy of Kiln-3: Optimization of Burner momentum, continuous monitoring of process parameters, Optimum operation of Kiln in Line-3	Technology Absorption	7705200000	152478941	13055.0	0	17542.7
9	Reduction in Upto Clinkerisation Power of Kiln-3: Optimization of Burner momentum, continuous monoitoring of process parameters, Optimum operation of Kiln in Line-3	Technology Absorption	0	82126034	6471.1	19935943.94	-
10	Upgradation Of Cement Mill 2: Modification of existing ball mill along with addition of new roller press for cement grinding to increase capacity & to improve grinding efficiency.	Technology Absorption	1204800000	32263226	2542.2	7831838.89	-
11	New WHR plant capacity 29.1 MW installation: New WHR plant capacity 29.1 MW installation, WHR Generation increased by 52799432 KWH (Generation in year 2019-20 was 63486739 kwh and in year 2020-21 is 116286171 kwh), plant commissioning completed in month Oct-2020.	Technology Absorption	1514435869	290396876	17138.3	52799432	-
	Total		10467585538	777176821	48319.0	80692614.8	29733.1

Energy Saving projects implemented FY 2021-22

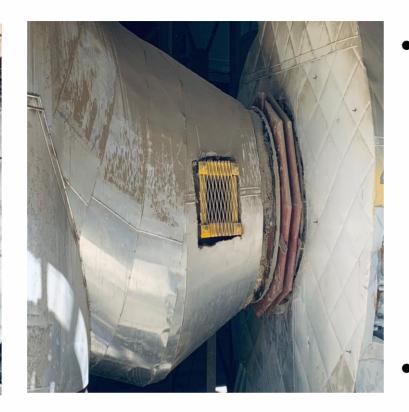
SNo.	Description of energy efficiency improvements measure	Category	Investment (Rupees)	Verified savings (Rupees)	Verified energy savings in MTOE	Units (kWh)	Fuel (MT)
1	Usage of AFR in Line-1 (11758 MT) by substituting primary fuel	Fuel Change	38627300	51531453	3080	-	4836
2	Usage of AFR in Line-2 (84691 MT) by substituting primary fuel	Fuel Change	104837543	228250409	13643	-	21420
3	Usage of AFR in Line-3 (95184 MT) by substituting primary fuel	Fuel Change	167867795	271721256	16241	-	25499
	Total		311332639	551503118	32964	0	51755
4	Cement Grinding Power reduction in Cement Mill-3 from 27.22 to 23.72 kwh/Ts Cem.	Illuminatio n	-	22281476	2305	6939249	
5	Clinker Factor reduction in Cement Mill-3 from 77.79 to 74.35% by adding treated Limestone as Activated Gypsum	Illuminatio n	19122647	120916386	4929		7739
6	Clinker Factor reduction in Cement Mill-4 from 74.62 to 73.62% by adding treated Limestone as Activated Gypsum	Illuminatio n	4246188	26849511	1095		1718
7	Replacement of 150 Nos. 150Watt HPSV Well Glass light by 40 Watt LED Well Glass	Illuminatio n	204825	363726	18	54450	
8	Replacement of 250 Nos.70Watt HPSV Well Glass light by 40 Watt LED Well Glass	Technology Absorption	3413/5	165330	8	24750	
9	Replacement of 92 nos of 2x36 watt conventional light by 2X18 watt LED light	Technology Absorption	1480/0	59735	3	8942	
10	Cement Grinding Power reduction in Cement Mill-4 from 27.71 to 26.49 kwh/Ts Cem. (After Ball mill circuit modified to Combi Circuit in FY 2019-20)	Technology Absorption	-	5928132	613	1846232	
11	 WHR Generation increased by 65798839 KWH (Generation in year 2020-21 was 11 116286171 kwh and in year 2021-22 is 182085010 kwh), plant commissioning completed in month Oct-2020. 		-	439619926	21852	65798839	
	Total		335396300	1167687339	63788	74672463	61213

1. WHRS Enhancement through, in house modification & optimization-Kiln 2&3

To optimize heat recuperation and WHRS generation by modifying HAR circuit.

JKC

Prior to modification, some operational points were observed that few Cooler fans were running on low load as well as stack damper was **partially** opened (40-45%) resulting into -80 to -90 mmwg draft in HAR Duct. A higher negative draft depicts that there is scarcity of air for cooling of clinker and to further to AQC boiler. A significant parameter for which is AQC inlet temperature 370 °C to 420 °C.



Modification done

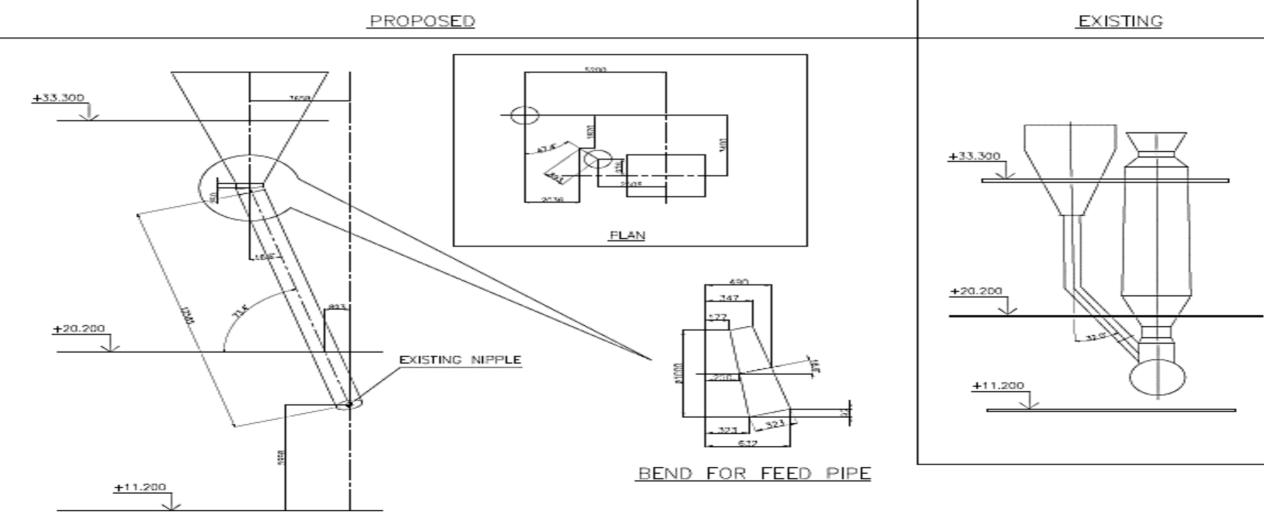
Kiln-3

- After 420 °C to 480 °C).
- gain in clinker temperature drop also. The same modifications was done in and also increased air flow to AQC boiler.

modification, a very large decrease in static pressure is observed in HAR duct (from -90 to +1~-1 mmwg) along with increased flow rate at AQC inlet. Albeit, apart from flow AQC inlet temperature have also increased (from

Through this we achieved constantly

higher WHRS inlet temp. with some


few cooler fans of Kiln-3 also and resulting into the consistent AQC inlet temperature of about 470-500 Deg C

Energy Saving projects

2. Case study Reduction in Cyclone jamming stoppages in Kiln-1:

JKC

In Unit-I, we modified Cyclone-V feed pipe orientation as per material flow to avoid cyclone jam.

PROPOSAL FOR 5TH CYCLONE DISCHARGE FEED CHUTE MODIFICATION

Energy Saving projects

3. VFD installation in bag filter fans in U-II & U-III

- Currently, in RM-III section in mill feeding belt we have two bag filter fan FN-152 & FN-107 which are running continuously with full speed on damper control mode.

JKC

- Their damper position is about 50-60% controlled by CCR.

- Another two bag filter fans running for DBC and in clinker tank top area with manual damper i.e. FN-622 & FN-462.

- In RM-IV & RM-V section in mill feeding belt we have two bag filter fan FN-613, FN-618, which are running continuously with full speed on damper control mode.

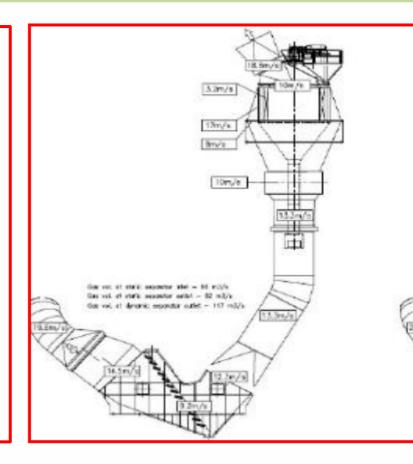
Saving in Power
Cost per unit (Nov'21)
Running duration per day
Days running in an year
Total Saving
Total Investment
ROI
ROI

Unit-III

Saving in Power Cost per unit (Nov'21) Running duration per day Days running in an year Total Saving Total Investment ROI ROI

Unit-II

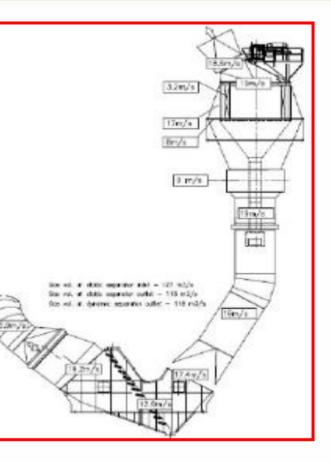
24	kwh
3.79	INR/kwh
22	hours
330	days
660370	INR/year
560000	INR
0.85	year
10	Months

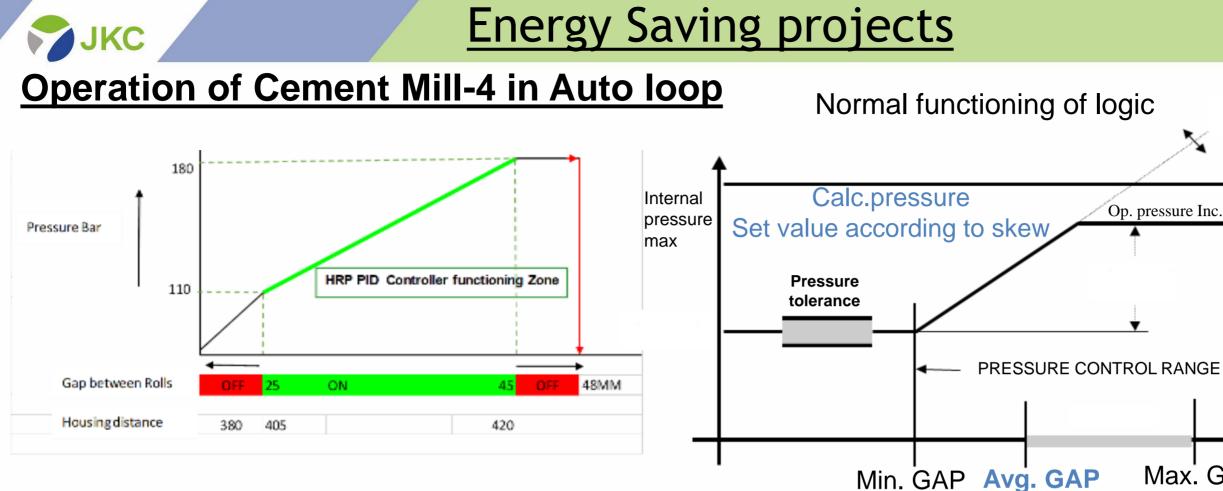

35	kwh
3.79	INR/kwh
22	hours
330	days
963039	INR/year
1100000	INR
1.14	year
14	Months

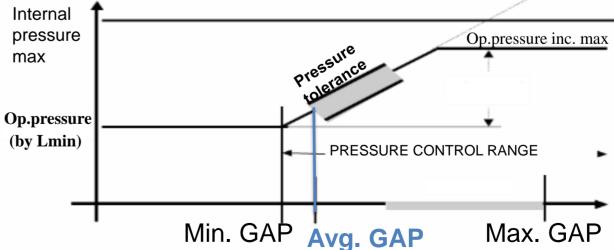
Energy Saving projects

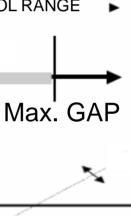
- <u>Issue</u>: High recirculation of material in static separator, it results lower rate of fresh feed in Cement mill-4
- Solution/Action taken:

JKC


- Installation of Movable guide vanes (5 + 2 nos.)at gas inlet side - CRPG-S
- Adjustable guide vanes (5 no's) CRPG-S in the outlet side
- <u>Benefits</u>: Fine material recirculation reduced because of proper air distribution across the separator




- **Issue:** Cake formation of HRP discharge material fed to static separator. High recirculation of material in • Cement Mill-4
- Action Taken: Installation of cake breaker at roller press discharge chute
- **Benefit:** Homogeneous material feeding to static separator discharge belt

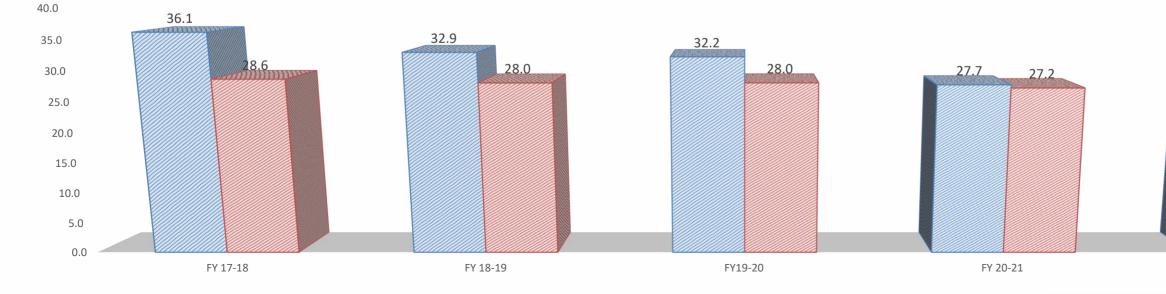

Present functioning of logic in Cement mill-4:

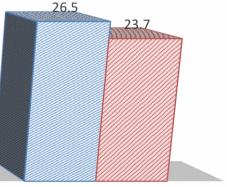
Due to NDE side operating gap slide towards the in operation where minimum pressure gap tolerance increases and auto logic function become void which works in safety band value further increase leads to flush and vibration of mill

Op. pressure Inc. max

Data comparison of Cement Mill-3&4 Before & After

Major Modification


- Interlocks to reduce power consumption(Ball mill start time) •
- Silo feeding elevator main drive changed which help in increasing feed. ٠
- False air arrest done which helps in grinding power reduction ٠
- Cement Mill-3 Ball mill fan & Separator fan Inlet damper removed to reduce pressure drop for enhancing power ٠ saving.


Minor Modification in Circuit

- Change in Sample location ٠
- Change in BC110 venting location ٠
- Mill discharge flap ۲

POWER CEMENT GRINDING

Cement Grinding CM-2&4 Cement Grinding CM-3

FY 21-22

S. No	o. Bottleneck	Problem Description	Actio
1	Silo feed elevator	 Silo feed elevator is designed for 300 TPH at 1 T/m3 bulk density and max load is 95A. The tripping is given at 85 A. Whenever silo feed bucket elevator reaches 80 A, control room operator reduces the feed rate to avoid mill stoppage 	
2	Material surging	 Whenever CM3 is running in OPC 43 or 53 grade, material surging observed from product cyclone 	 Immediate Action: Detain will be taken to identify problem
3	Gypsum hopper frequent jamming	 Frequent gypsum hopper jamming observed and it reduces the mill output 	• New chute with Teflon p will be fixed in coming s
4	Additive feeding	 Additive reclaimer capacity is not enough to feed all the materials (Pond ash, PI and Gypsum) 	Additive reclaimer speed help of Mech. & Inst. tea

on Plan

ping limit increased to 90 A. ator upgradation

ailed process measurement y the cause for surging

plate along with air blasters shutdown

ed will be increased with the eam

CM-4 Bottlenecks & Action Plan (300 TPH)

9	5. No.	Bottleneck		Problem Description		Action
	1	Clinker hopper capacity	•	Clinker hopper capacity is 235 MT and same feeding belt for PI and clinker. If we increase the feed, we couldn't able to make up the clinker hopper and whenever clinker reaches lower level, surges happened.	•	Use RABH dust as PI in CM4 the avoid PI feeding as well as hopp be improved and PI hopper car (Detailed proposal will be subn feasibility) New steel hopper and feeding existing PI hopper for clinker.
	2	Less utilization of CSP	•	CM 1 extraction belt is not in use and 40% CSP clinker couldn't able to extract during running	•	CM1 extraction belt (U1L16) will (U1L18) extraction belt by exter clinker feeding rate and also we
	3	RP recirculation elevator tripping limit	•	Additive reclaimer capacity is not enough to feed all the materials (Pond ash, PI and Gypsum)	•	Additive reclaimer speed will be Mech. & Inst. team
	4	RP prebin flushing	•	Whenever RP slide gate opening increased in roller press, sudden material surge happens and RP tripped in vibration	•	Fresh feed and recirculation ma pre-bin feed belt. Will be rectifi
	5	Gypsum hopper frequent jamming	•	Frequent gypsum hopper jamming observed and it reduces the mill output	•	New chute with Teflon plate alo fixed in coming shutdown
	6	Diaphragm jamming	•	More nibs observed in diaphragm slots in short duration which chokes the ball mill frequently	•	Nibs trap chute cleaning will be itself if the nibs trap feed pipe of recirculation elevator. This work shutdown
	7	Baghouse rotary airlock over load	•	Frequent mill stoppages are due to bag house cage fallen in rotary air lock and getting over load. The above problem is persisting because of design issue in baghouse	•	Require long stoppage (around necessary modifications as per orders already processed. Await

n Plan

hrough FK pump system and pper. So clinker feeding rate can an be used as clinker hopper. omitted after evaluating site

system for PI and use the

vill be connected with CM4 ending tail drum to increase the ve can utilize full CSP capacity

be increased with the help of

naterial segregation observed in fied in coming shutdown

long with air blasters will be

e done in mill running condition connected with ball mill rk will be carried out in coming

d 10 - 15 days) to do the r OEM recommendation. All the aiting for mill stoppage.

Operation of OLBC belt from Maliakhera mines

- In rough terrain, the transport of goods for example by truck involves significant effort and costs. When you use a Over land belt conveyor, you not only save much time and energy but reduce your costs for earthwork and transfer stations – while benefiting from low personnel expenses. At the same time you contribute to environmental protection thanks to reduced CO2 emissions, as well as lower noise emissions compared with truck and rail transport.
- Quick amortization of the systems due to high savings potential, as well as low maintenance \succ costs are further winning arguments. The smart feed control provides optimized usage of drives and belts when facing varying height profiles. Sophisticated drive technology and lowwear and low-maintenance components of high quality reduce system charge and increase service life.
- Operation of OLBC belt from Maliakhera mines to plant by which it will save diesel cost by vehicle installed in Dec'21 and operation in Jan'22. Saving calculation done for only three months.

Project Cost (INR Lakhs)	Intangible Benefits	Tangible Benefits	
630.11	Reduction in CO2 emissions. To protect against global warming.	2.2 Lakh Liter Diesel	
050.11	Reduction in CO2 emissions. To protect against global warming.	Saved	

Savings (INR) Payback (Years)

203.31 0.77

Utilization of Renewable Energy sources

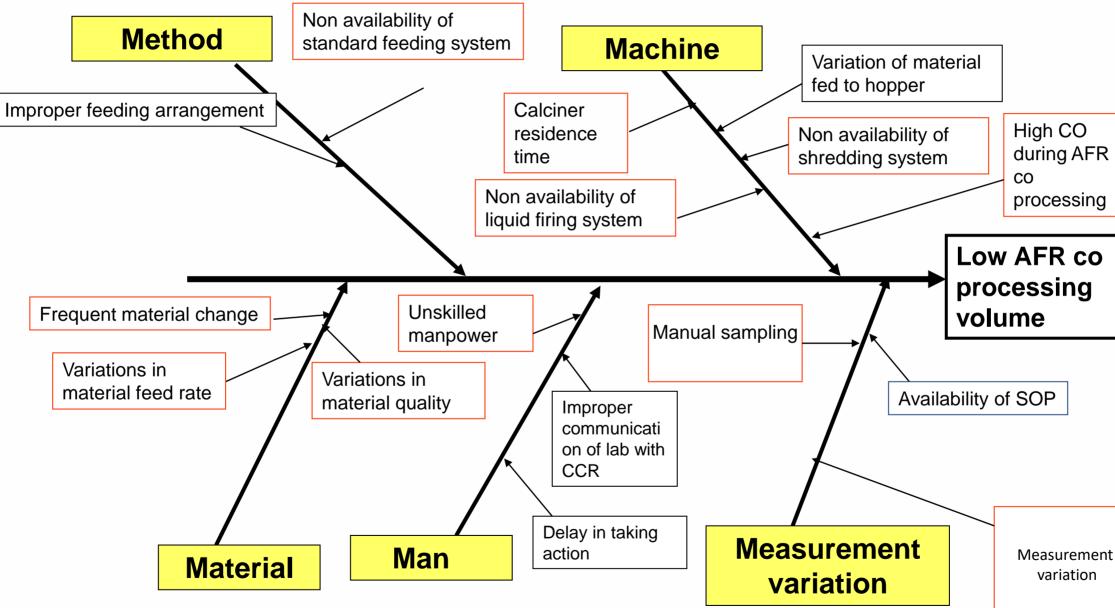
Year	Technology	Type of Energy	Onsite/Offsite	Installed Capacity MW	Generation (million KWh)	% of overall electrical energy
FY 2018-19	Waste Heat recovery System	Electrical Energy	Onsite	10 MW	66.22	22%
FY 2019-20	Waste Heat recovery System	Electrical Energy	Onsite	10 MW	63.49	24%
FY 2020-21	Waste Heat recovery System	Electrical Energy	Onsite	29.1 MW	116.29	37%
FY 2021-22	Waste Heat recovery System	Electrical Energy	Onsite	29.1 MW	182.09	49%

Utilization of Renewable Energy sources

Installation of 13 MW Solar Power plant (Planned)

Equipment	Average load (MW)
Line 1 (Excluding Pyro Section)	9.9
Line 2	21.4
Line 3	17.1
Maliakhera Crusher	1.7
Total	50.1

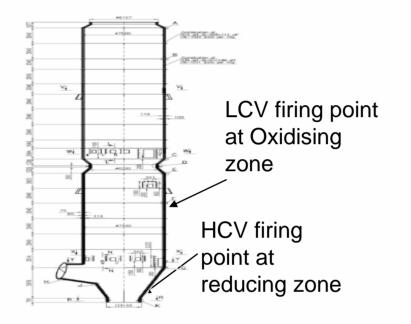
Source (MW)	Max. Load	Sent-out
СРР	25	22
WHRS	29.2	22
Grid sanctioned load	31.5	31.5
Total	85.7	75.5

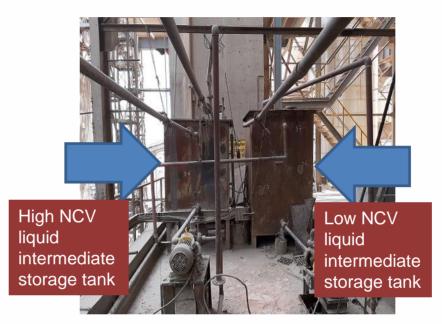

Cost of electricity @ MGRL 6.25, Solar @ 3.5

D/E ratio - 70:30, & 26% equity in group captive considered

In-house source (MW)	44	
Power Deficit (MW)	6.1	
Running CPP at low PLF (MW)	3.0	
Peak AC capacity required	9.07	
DC to AC loading factor	1.4	
Average PLF (%)	17%	
Total Solar Capacity (MW)- DC plant capacity	13	
Savings (INR / Year)	6,06,15,173	C
Savings (MT Cement)	17	
Investment (INR)	4,19,03,400	D
Payback (Years)	0.69	

Methodology-Root cause Identification





Waste utilization and management

Counter measure and Implementation

Equipment Installation \succ

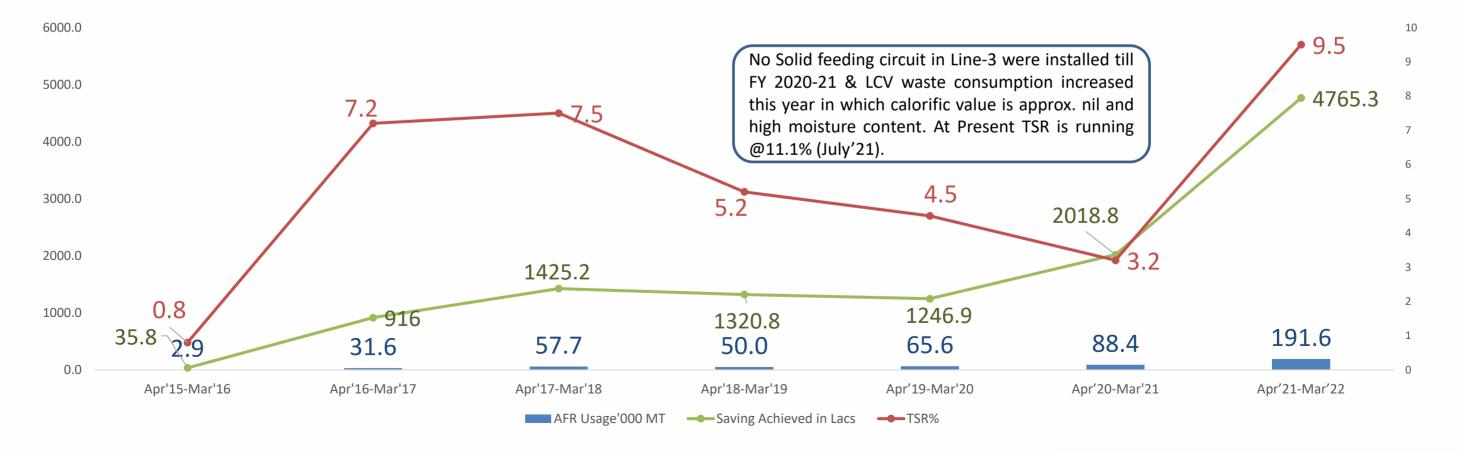
Installation of additional Martin Blasters at coating prone zone

Weima Shredder installed

High NCV feeding point at reducing zone of calciner

1st feeding point of low NCV feeding point at oxidising zone

3rd feeding point of low NCV feeding point at ILC TAD duct outlet duct connecting to ILC



2nd feeding point of low NCV feeding point at oxidising zone

Data comparison Before & After

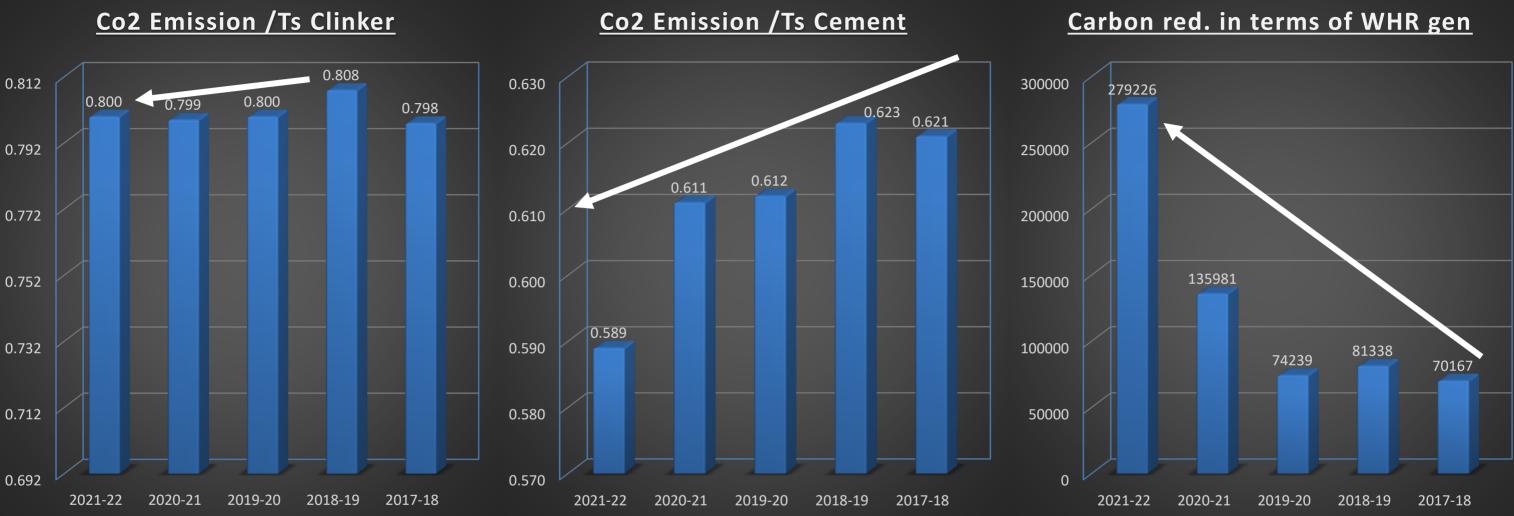
Parameters	UOM	Apr'15- Mar'16	Apr'16- Mar'17	Apr'17- Mar'18	Apr'18- Mar'19	Apr'19- Mar'20
AFR Usage	MT	2933	31565	57744	50015	65580
Thermal Substitution	%	0.8	7.2	7.5	5.2	4.5
Saving Achieved	Lacs	35.8	916.0	1425.2	1320.8	1246.9

Apr'20- Mar'21	Apr'21- Mar'22
88424	191633
3.2	9.5
2018.8	4765.3

Benefits Achieved

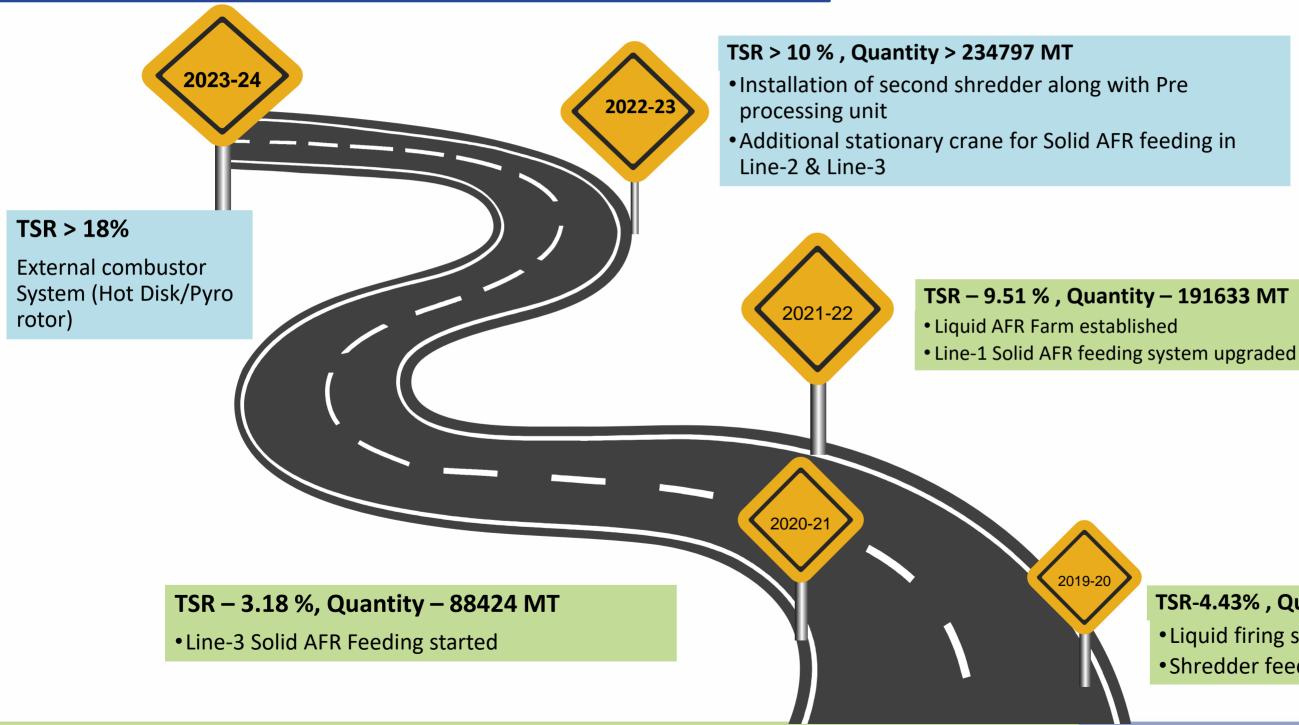
Tangible benefits:-

- Total Saving of Rs 4765.3 Lacs from AFR usage last year.
- Total saving of 51755 MT of main fuel (Pet coke).


Intangible benefits:-

- Co-processing of AFR reduced the land filling.
- Reduction in CO2 emissions.
- To protect against global warming.

Fly Ash Utilization							
	2015-16	2016-17	2017-18	2018-19	2019-20	2020-21	2021-22
%	29.2	30.7	30.9	28.4	27.1	29.8	31.8
Quantity	261269	333667	340945	362206	372162	407721	387961


GHG Inventorisation

Co2 Emission /Ts	2021-22	2020-21	2019-20	2018-19	2017-18
Emission Per Ts Clinker	0.800	0.799	0.800	0.808	0.798
Emission Per Ts Cement	0.589	0.611	0.612	0.623	0.621
Carbon reduction in terms of WHR gen.	279226	135981	74239	81338	70167

AFR Aspiration & Roadmap

TSR-4.43% , Quantity – 65580 MT

• Liquid firing system • Shredder feeding started

Environmental projects with carbon emission reduction in FY 2021-22:

Projects

- AFR Consumption increased from 88424 to 191633 MT
- Reduction of OPC Clinker factor from 0.876 to 0.868
- Reduction of PPC Clinker factor from 0.624 to 0.569
- Replacement of conventional lightening with LED lights 881
- Reduction of CO2 from 611 to 589 kg/MT of cem
- Increase in WHR Generation from 116.3 to 182.1 mio KWH
- Started using Industrial Fuel Oil (96,460 L) in replace of High speed Diesel to save natural resouces.

By 0.9% By 8.8% 88142 KWH saved By 3.6%

By 116.7%

By 56.6%

96460 L

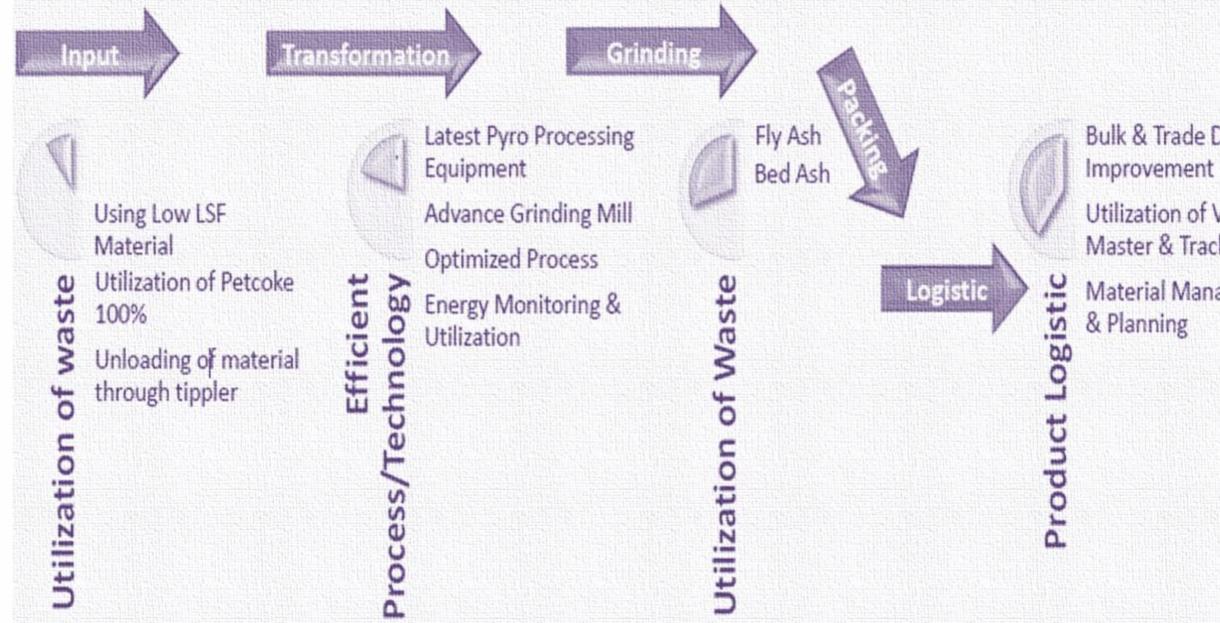
Environmental Projects

Installation of SNCR to reduce the Nox emissions

Installation of Liquid Firing System

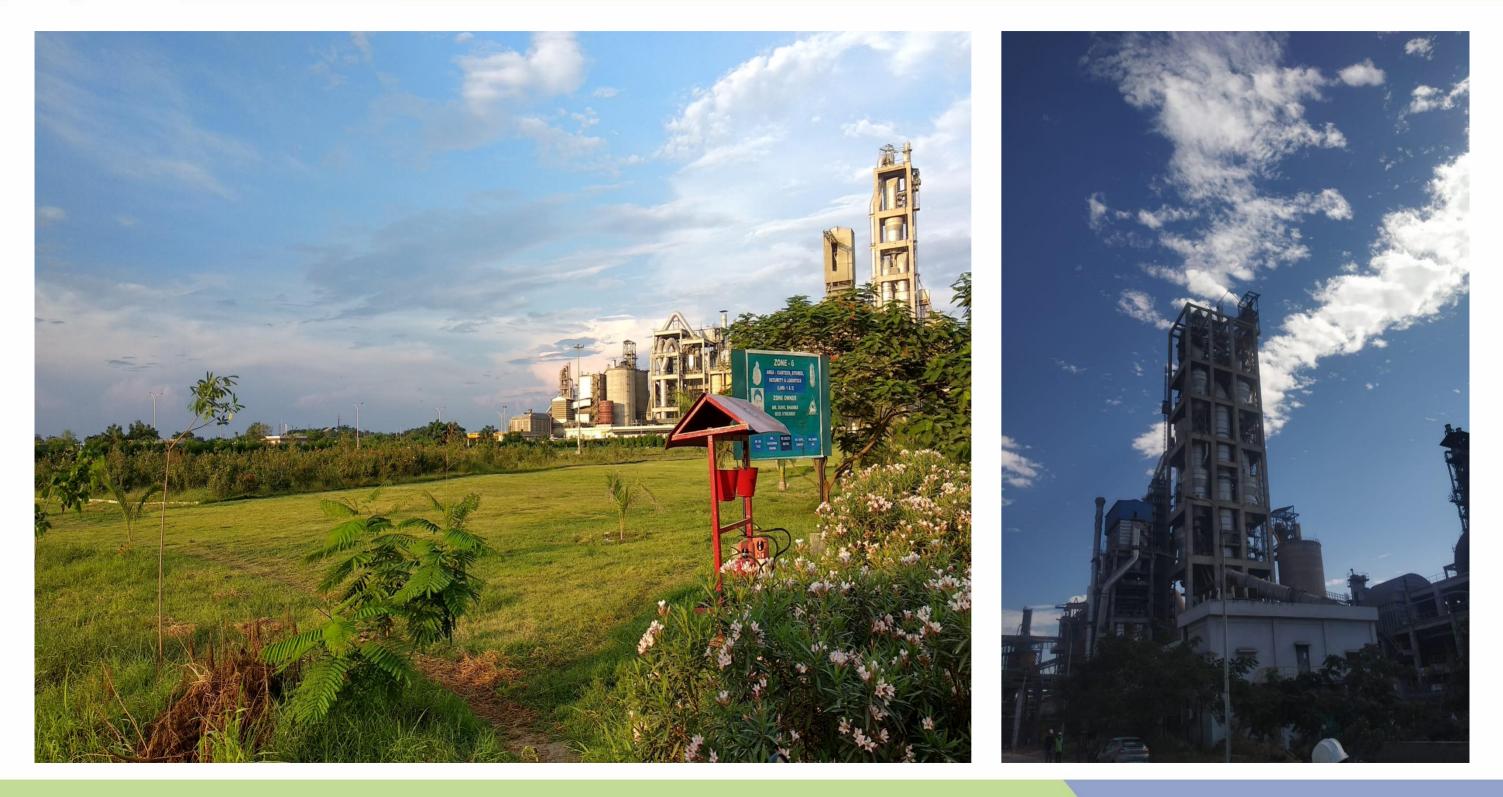
Installation of Solid Feeding System

Feeding Hopper


Belt Conveyor-3

Belt Conveyor-2

Green Supply Chain Management



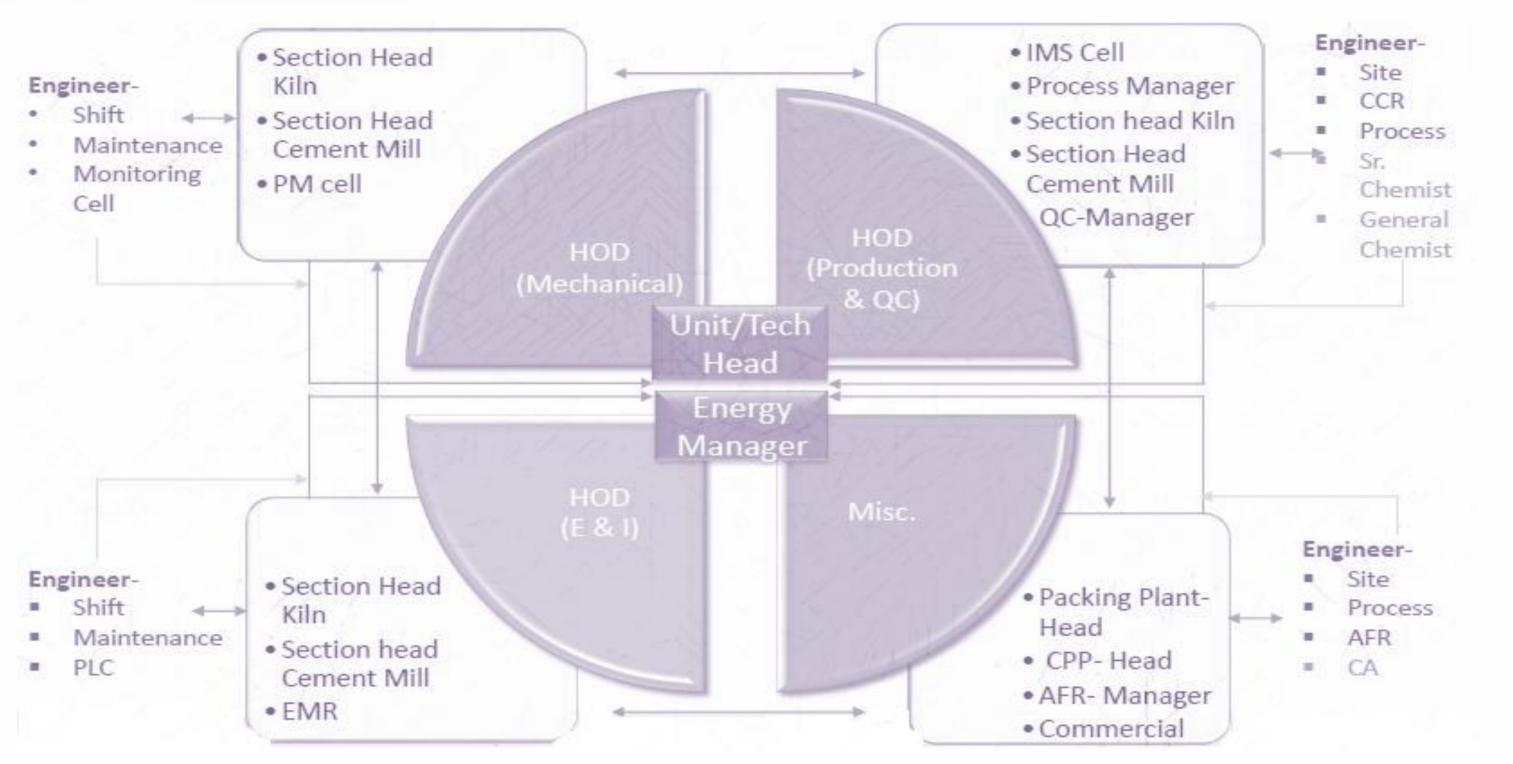
Bulk & Trade Dispatch Utilization of Vehicle Master & Tracking Material Management

User

Green Development

Green Development

Green Development - Housekeeping



Energy Committee

Energy Monitoring System & Keizen

	Reports/Presentation	Frequency
•	Frequency of review of energy consumption	f Daily
•	Energy Management cell meeting	t 15 Days
	Frequency of review of energy conservation Project	
•	Energy management Review meeting	t Monthly

Mangrol Keizen

S. No.	Parameters	Values
1.	Achieved (2018-19) SEC Toe/t	0.0656
2.	Baseline (2014-15) SEC Toe/t	0.0833
3.	Target Toe	0.0786
4.	Baseline Production Tonnes	2035131
5	Target Reduction in gate to gate SEC	5.52%
6.	ESCerts	26457

PAT Cycle Performance (PAT-VII)

🎓 ЈКС 🖌

S.No	Parameters	Base year (2018-19)	2019-20	2020-21	2021-22	Percentage Decrease 21-22 w.r.t Base year 18- 19)
1	Gate to Gate SEC (Un-normalized)	0.0854	0.0913	0.0860	0.0811	5%
2	Gate to Gate SEC (Normalized)	0.0854	0.0913	0.0858	0.0796	7%
3	Thermal SEC	702.37	707.54	698.09	721.79	-3%
4	Electrical SEC (Up to Clinker)	49.24	49.13	48.75	51.47	-5%
5	Electrical SEC (Cement grinding	30.96	30.53	28.76	26.45	15%
6	Gross Heat Rate of CPP	3208.23	3276.22	3278	3354.28	-5%
7	Weighted average. heat rate	3208.21	3266.85	3245.93	3321.09	-4%

Daily Drive wise Power monitoring

DescriptionDescriptic																															
Image: state s	Drive Wise Power back up			Outro					Dr	Drive Wise Power back up		Month						Drive \	Vise Power back up		Outp	u									
1 (1) (1) (1) (1) (1) (1) (1) (1	Machine	DESCRIPTION	Ever Best				30	31 up to	Machine	Machine DESCRIPTION				DESCRIPTION		DESCRIPTION		Wionan	(TPH/TPD)	(Hrs.)	29	30	31 up to date			Ever N		MTE	/		
1-90 1-90 1-90 1-90 1-90 1-90 1-90 1-90 1-90 1-90 1-90 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>date</th> <th>4 </th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Machine</th> <th>DESCRIPTION</th> <th>Best n</th> <th>th (TPH</th> <th></th> <th>1 29</th> <th>30 31</th> <th>up to</th>								date	4									Machine	DESCRIPTION	Best n	th (TPH		1 29	30 31	up to						
image: base of the series of				4					4			-					+ + 1				TPD	/	4		date						
image image <th< td=""><td>Crusher 1</td><td></td><th></th><td>July'16 352</td><td>NA</td><td></td><td></td><td></td><td>4 </td><td></td><td></td><td>- </td><td></td><td></td><td></td><td></td><td></td><th></th><td>HT Drive</td><td>0.00</td><td></td><td></td><td>0.00</td><td>0.00 0.00</td><td>0.00</td></th<>	Crusher 1			July'16 352	NA				4			-							HT Drive	0.00			0.00	0.00 0.00	0.00						
image: state				4					-			7.98 2.65 Apr'16 2340				L	+ + 1			0.00			0.00	0.00 0.00	0.00						
And Amber Amb					_				KILN 1				646				Cement Mill 1				NA										
				4					4	•									Cement Mill 1 Maintenance					0.00 0.00	0.00						
image: bold ima	Crusher 2			Mar'19 621	NA				4										Tatal					<u></u>							
 				4						Kiln 1 Maintenance		1								0.00		4	0.00	0.00 0.00	0.00						
Implicit										Total	21.78	1			22.15	22.20	22.47 21.88			4.16			3.86	4.54 4.24	4.40						
And 100 40				4					-	Coal Mill MCC	11.75				14.83	15.37	15.27 14.81		· · · ·						<u> </u>						
Image: content of conten of content of content of content of content of cont				4						Coal Mill HT Drive	12.59	Apr'16	10	NA	15.99	16.75	16.78 14.90			3.88			3.56	4.28 4.00	4.11						
Image: Part of the series of	Raw Mill 1			Apr'16 76	12					Coal Mill Maintenance	0.81		10		0.00	0.00	0.00 0.00														
image: part of the set of the				-					┥ ╽	Total	24.34				30.82	32.13	32.05 29.71			7.18			6.53	6.96 6.88	6.89						
 H190e H30 H30e <li< td=""><td></td><td></td><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><th></th><td>· · ·</td><td></td><td></td><td></td><td></td><td></td><td></td></li<>																			· · ·												
 												-				<u> </u>	+ + 1			0.56			0.53	0.61 0.61	0.57						
M3 100 1 M3 100 1 <th< td=""><td></td><td></td><th></th><td></td><td></td><td></td><td></td><td></td><td>4 </td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><th></th><td>C M Separator Fan 1200</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>									4										C M Separator Fan 1200												
Image: state of the state				4								Devia		200		<u> </u>	+ + 1			3.82			4.00	3.89 3.87	3.81						
image: base set in the condence of the	Raw Mill 2			Apr'16 75	34							Dec.19	5003	3 306				Cement Mill 3	Separator Drive 475 KW		or' 262	103									
 Image: A constraint of a constrai				4								-					+ + 1		· ·	0.77	1		0.87	0.78 0.70	0.75						
									-												0.07			0.07	0.00 0.07	0.04					
 					_							21.45 13.87							Cement Will PMCC 10 (L.1.)	2.21			2.37	2.30 2.37	2.34						
Image: marrow									-	Coal mill M.D. (H.T.)	13.87				15.09	14.77	15.53 13.58		Clinker and Fly Ash	0.68			0.55	0.73 0.91	0.76						
Max40 Max40 <th< td=""><td></td><td></td><th></th><td>-</td><td rowspan="4">430 319</td><td></td><td></td><td></td><td></td><td>Coal Mill Fan (H.T.)</td><td>14.78</td><td></td><td>14.68</td><td>14.46</td><td>15.40 13.60</td><td></td><td>Handling PMCC 10 A (L.T.)</td><td>0.00</td><td></td><td></td><td>0.00</td><td>0.70 0.01</td><td><u> </u></td></th<>				-	430 319					Coal Mill Fan (H.T.)	14.78				14.68	14.46	15.40 13.60		Handling PMCC 10 A (L.T.)	0.00			0.00	0.70 0.01	<u> </u>						
Image: Normal matrix in the		,	4.75					COAL MILL 2	Coal Mill PMCC 8 (L.T.)		2 27	NA	9.14	14.35	35 14.76 12.99		Utility	0.75			0.96	0.98 1.16	0.85								
 	Raw Mill 3			May'1 430)				Coal Handling PMCC 9 (L.T.)	2.80	2.80 0.00	10 27	27	NA	4.61	4.69	4.81 4.14		Cement Mill 3											
 				1					4											Maintenance	0.17			0.00	0.00 0.00	0.00					
 				1					-										Total 2	24.08			23.23	25.07 24.72	24.49						
 				1												<u> </u>	+ + 1					+-									
 												-							2.43			2.37	2.32 2.25	2.30							
 				1					1			-				<u> </u>			BP Main Drive-2	3.06											
Mach (n) 0.00 0.00 0.00 <th< td=""><td></td><td></td><th></th><td></td><td></td><td></td><td></td><td></td><td>1 </td><td></td><td></td><td rowspan="3">6.05 0.91</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3.23</td><td>3.19 3.09</td><td>2.95</td></th<>									1			6.05 0.91											3.23	3.19 3.09	2.95						
Image: here Miles Marce Cality Oracle Oracle Oracle Oracle			0.03	1		0.04	0.04	0.04 0.04	1									Z2M03M1 BALL MILL DRIVE													
Main Matrix Matrix <td></td> <td>RM MCC-4 (LT)</td> <th>0.73</th> <td>1 </td> <td></td> <td>0.84</td> <td>0.86</td> <td>0.83 0.80</td> <td>1 </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1 </td> <td>-1</td> <td>5.91</td> <td></td> <td></td> <td>6.36</td> <td>6.46 7.14</td> <td>6.39</td>		RM MCC-4 (LT)	0.73	1		0.84	0.86	0.83 0.80	1									1	-1	5.91			6.36	6.46 7.14	6.39						
143800 0 de levard (c) 1 = 0 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 /	Raw Mill 4	323BE170 Bucket Elevator (Calculated)	0.54	Sep'20 298	34	0.59	0.59	0.58 0.57	1	Kiln Feed & Pre Heater (MCC-07)	0.49	1			0.63	0.61	0.61 0.62		Z2M03M2 BALL MAIN	5.01			6.41	6 52 6 07	6.41						
Matrix Matrix<		343BE010 Bucket Elevator (Calculated)	0.24			0.14	0.15	0.16 0.16	1	Cooler & Coal Firing (MCC-08)	1.02				1.10	1.07	1.05 1.09		DRIVE -2	0.01			0.41	0.00 0.97	0.+1						
Image: biase		Common MCC(LS REC, MCC-3)	0.49	1		0.44	0.43	0.45 0.40	Kiln-3	Cooler ESP (443EP500)	0.35	Sep'20	7748	64	0.26	0.26	0.26 0.28		1 ·	4.14			4,75	4.85 4.65	4.80						
Mark Mark <th< td=""><td></td><td>Utility(15%)</td><th>0.26</th><td></td><td></td><td>0.32</td><td>0.30</td><td>0.30 0.32</td><td>] </td><td>VFD For Blower (467BL310- From PCC3)</td><td>0.00</td><td></td><td></td><td></td><td>0.31</td><td></td><td></td><th></th><td>(L05)</td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td></th<>		Utility(15%)	0.26			0.32	0.30	0.30 0.32]	VFD For Blower (467BL310- From PCC3)	0.00				0.31				(L05)						<u> </u>						
Image: condiminant field		RM-4 Maintenance	0.11			0.00	0.00	0.00 0.02]										Separator drive 522MD302	0.27			0.26	0.27 0.28	0.26						
RP Drivel Power (HT) 3.37 X		Total	12.21			13.60	13.62	13.24 13.15							-			Cement Mill 4			275	91									
Raw Mil 5 RP Drive2 Power (HT) 3.10 All All<		RP Drive1 Power (HT)	3.37			4.07	4.22	4.06 4.09				-							Elevator 522BE170M1	0.28	-		0.31	0.30 0.31	0.30						
RM Sep En (HT) 3.91 3.91 3.91 3.70 3.72 3.86 RM Sep En (HT) 0.01 RM Sep Dive (LT From PC2) 0.01 0.02 0.03<		RP Drive2 Power (HT)	3.13			4.12	4.25	4.09 4.18				-				L	+ + 1		Elevator 532BE220M1	0.28			0.26	0.25 0.27	0.27						
RM Sep. Drive (LT From PCC2) 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 <		RM Sep Fan (HT)	3.91			3.94	3.79	3.72 3.86		- · · · · ·										1.32			1 45	1.34 1.45	1.46						
Rx Mill 5 Rx MCC-5 (LT) 0.84 Nov20 0.85 0.76 0.76 0.82 State 70 Sucket Elevator (Calculated) 0.50 Nov20 0.56 <		RM Sep. Drive (LT From PCC2)	0.03			0.04	0.03	0.03 0.03																							
Raw Mill 5 Sub 20 Back Elevation (Calculate) Nov 20 Sub		RM MCC-5 (LT)	0.84	5 Nov'20 300	300 41				0.85	0.78	0.76 0.82											CM-2 MCC	1.01			1.53	1.27 1.23	1.30			
343B010 Bucket Elevator (Calculated) 0.18 0.16 0.14 0.13 0.16 Common MCC(LS REC,MCC-3) 0.36 Mtility(15%) 0.34 0.32 0.32 0.33 <	Raw Mill 5	324BE170 Bucket Elevator (Calculated)	0.55			0.58	0.56	0.55 0.56]										FLY ASH MCC	0.40			0.41	0.36 0.42	0.29						
Common MCC(IS RE,MCC-3) 0.36 0.42 0.43 0.42 0.43 0.44 0.49 0.49 0.49 0.49 0.44 0.49 0.44 0.49 0.44		343BE010 Bucket Elevator (Calculated)	0.18				0.16		0.13 0.16	4 1	Coal Mill Fan Drive (HT)	12.18				16.43	16.62			Utility	0.91			0,72	0.65 0.87	0.67					
Other Unity(15%) 0.34 0.37 0.28 0.28 0.33 RM-5 Maintenance 0.07 0.00 0.00 0.00 0.02		Common MCC(LS REC, MCC-3)				0.50				Coal Mill Sep. Drive (LT From PCC3)	1.93	Sen'20	41	NA	1.84	1.83	2.21 1.69						<u> </u>								
										Coal Transp. & Grinding (MCC-10)		Sep 20	41	NA	5.29	4.49	5.10 4.98		Cement Mill 4 Maintenance	0.00			0.00	0.00 1.04	0.40						
Total 12.70 14.62 14.48 14.02 14.45 Total 31.77 40.63 39.70 47.91 36.89 10101 25.91 26.92 27.78 28.92 27.39				-					- 1										Total	05.01			28.05	27 78 29 02	27.20						
		Total	12.70			14.62	14.48	14.02 14.45		Total	31.77				40.63	39.70	47.91 36.89		TOLGI	3.51			20.05	20.92	21.39						

ISO 50001

- **Current Issue Data**
- 29th July 2023 Expiry date
- Certificate identity number

10288749

335.4

0.52%

28th Aug 2020

EnCon Project budget allocation %

- Total turnover of the company/plant FY 2021-22 (Rs. 64416 Million)
- Amount invested in EnCon Projects FY 2021-22 (Rs. Million)
- **Investment %**

Lloyd's Register

28 August 202 29 July 2023

Certificate of Approval

This is to certify that the Management System of:

J K Cement Works

(Unit of J.K Cement Ltd.), Mangrol, Distt : Chittorgarh, Rajasthan, 312620, India

has been approved by Lloyd's Register to the following standards

ISO 14001:2015, ISO 45001:2018, ISO 50001:2018, ISO 9001:2015

Approval number(s): ISO 14001 - 0054439, ISO 45001 - 0052670, ISO 50001 - 0060520, ISO 9001 - 00019280

This certificate is valid only in association with the certificate schedule bearing the same number to this approval are lister

The scope of this approval is applicable to

The manufacture of ordinary Portland cements, blended cements and mining activities at Tilakhera and Manuro

Jun's burba

Luis Cunha Area Operations Manager - SAMEA ued by: Lloyd's Register Quality Assurance Limited

with the relevant I lowd's

Employee involvement

Daily review meetings (PD)

Manufacturing Excellence drive

Daily site inspection

Employee Trainings

S No.	NAME OF TRAINING	No. of Persons	S No.	NAME OF TRAINING	No. of Persons
1	ADVERSE IMPACT OF GAS FLOW IMBALANCE	6	20	LATEST LOW NOX PYRO PROCESSING SYSTEMS	8
2	AN ORIENTATION TO CEMENT MANUFACTURING PROCESS	7	21	LOW CARBON CEMENT - OPTION & CHALLENGES	2
3	CHEMICAL ANALYSIS OF HYDRAULICS CEMENT-1	3	22	LOW CARBON CEMENT-OPTION & CHALLENGES	2
4	CHEMICAL ANALYSIS OF HYDRAULICS CEMENTS-1	3	23	MAINTENANCE OF BEARINGS & RELIABILITY	6
5	DESIGNING ENERGY EFFICIENT COMPRESSED AIR DISTRIBUTION SYSTEM	3	24	MAXIMIZATION OF ALTERNATE FUELS AND RAW MATERIALS UTILIZATION IN CEMENT INDUSTRY	2
6	ELECTRIC CIRCUIT BREAKER	2	25	OPERATION & MAINTENANCE OF GEARBOX	6
7	ENHANCING PROFESSIONAL EFFECTIVENESS OF EMPLOYEES	2	26	OPERATION & MAINTENANCE OF HT MOTORS	3
8	ESSENTIALS OF SUSTAINABLE ZERO LIQUID DISCHARGE (ZLD) SYSTEMS	1	27	PFISTER ROTOR WEIGH FEEDERS FAR	14
9	FATALITY PREVENTION ELEMENTS - FPEs (PROACTIVE & REACTIVE APPROACH TO SAFETY)	16	28	PRODUCT CERTIFICATION PROCEDURE FOR BIS	1
10	FIRE WARDEN/ ERT TRAINING	24	29	RAW MIX DESIGN AND ITS MODULI VALUE	1
11	FIRST AID- ST. JOHN AMBULANCE & FIRE FIGHTING	18	30	REDUCTION OF AT & C LOSSES IN ELECTRICAL TRANSMISSION AND DISTRIBUTION SYSTEM	1
12	FIRST AID TRAINING	24	31	REDUCTION OF AT & C LOSSES IN ELECTRICAL TRANSMISSION AND DISTRIBUTION SYSTEMS	1
13	GREENCO SUMMIT 2020 (VIRTUAL CONFERENCE & EXPO)	1	32	REFRESHER RAINING ON FIRST AID	2
14	IMPACT OF RAW MIX DESIGN AND BURNABILTY ON CEMENT QUALITY	11	33	SAFE WORKING IN CORONA (COVID-19) RISK PERIOD	15
15	INCIDENT REPORTING, INVESTIGATION AND CAPA	11	34	SELECTION, USE, MAINTENANCE, REJECTION AND CARE OF PPEs	15
16	INCREASING EFFICIENCY IN INDIA'S PACKING AND DISPATCH OPERATIONS	8	1 35	SUSTAINABLE SOLUTION FOR JUDICIOUS USE OF FLY ASH FROM DESULFURIZATION PROCESS AND POND ASH	4
17	KILN REPAIR AND MAINTENANCE	10	36	TRAINING ON FIRST AID	6
18	LARGE SIZE VERTICAL ROLLER MILLS	20	37	TRAINING PROGRAM ON FIRST AID -SNAKE BITE	7
19	LATEST GENERATION CROSSBAR COOLER	7		Grand Total	273

Key Achievements in Plant Performance KPI

	Ever Best achievements in a Year	UOM	FY'22	Previous Best			
	Clinker Production	Lac MT	48.17	40.98			
	Cement Production	Lac MT	34.96	30.80			
	Cement dispatch	Lac MT	35.10	30.81			
\bigcirc	WHR Generation Capability	Lac KWH	1820.85	1162.86			
00	WHR Generation Capability	Kwh/Ts Clk	37.80	28.38			
	AFR consumption	Lac MT	1.92	0.88			
	AFR TSR	%	9.51	3.18			
	AFR Savings	Cr.	49.97	20.19			
QP							
° Ô O	Overall clinker factor	%	74.04	76.43			
	Fly Ash Consumption	%.	31.83	30.94			
	Grinding Power CM-3	Kwh/Ts Cem	23.72	27.22			
	Grinding Power CM-4	Kwh/Ts Cem	26.49	27.71			

Month best – 4.53 Lac MT Month best – 3.45 lac MT Month best – 3.54 lac MT Month best – 175.22 Lac KWH

- Month best 0.25 Lac MT
- Month best **14.98 %**
- Month best 6.93 Cr
- Month best **72.89 %**
- Month best **32.53 %**
- Month best 21.74 kwh/Ts Cem
- Month best 24.09 kwh/Ts Cem

Cost Saving in STSP by sourcing from Alternate vendors in FY21-22 (Saving of INR 2.54 Cr) Successfully establishment of Liquid AFR Farm in Mangrol Plant leading to consistency of Liquid AFR Feeding. Commissioning of OLBC for feeding of Limestone in Line-3, a move towards Carbon emission reduction & saving in Limestone cost (Feb'22 saving of INR 85.45/MT clk. Achieved as compare to Dec'21) Successfully commissioning of Oxygen Generation Plant which will help in reduction of dependency on vendors. Successful commissioning of New packer and truck loaders. It helps in increasing utilization of CM-4 and additional 1500 MT dispatch.

- Implemented more than 982 Kaizen.
- SAP implementation journey from <10% implementation to >85% Implementation in Mangrol Plant.

Feathers added to Mangrol Cap in FY'22

JKC

Certificate of Award

This is to certify that JK Cement Works, Manarol has been awarded as the 2nd Runner Up (Large Sector under Best Energy Efficient Designated Consumer (Under BEE PAT Scheme) Category in the 6th Edition of CII National Energy Efficiency Circle Competition held on 14-16 July 2022.

Dr Sudhir Kapoo CII National Energy Efficiency Circle Competition

Mr Pikender Pal Singh Executive Director Confederation of Indian Industry

Date: 16-07-2022

6th Edition of CII National Energy Efficiency Circle Competition

Certificate No. EC22/A01

THANKS

STAY SAFE